HOLLOW FIBER VS. FLAT SHEET TECHNOLOGY

(A CASE STUDY)

Presented By: Samer K. Mazloum

OVERVIEW

• MEMBRANE TECHNOLOGY OVERVIEW.

• ACTUAL DESIGN CASE STUDY COMPARISON.

MEMBRANE TREATMENT SPECUTRUM

	ST Microscope S	canning Elec	tron Micro	oscope Opti	ical Microscope	e Visi	ble To Naked Eye
Micrometers				ope ope	ion minister	1 101	
(Log Scale)	Ionic Range	Molecular Ra	ngeMacro	Molecular Ran	ge Micro Parti	cle Range M	acro Particle Rang
	0,001	0,01	0,1	1.0	10	100	1000
Angstorm Units (Log Scale)	101	 102 	103	104	s 10	75 10. I	6 107
Approx. Molecular Weight	100 200 1000 1	0,000 20,000	100,000	500,000			
					Cryptosporidi	um	
	Aqueous] Carb	on Black	Paint P		ardia Huma	n Hair
	Salt					yst	Beach Sand
	Metal Ion	Vir	us		Bacteria		Mist
Relative					Coal	Dust	
Size of			Gelatin			Pin	
Common			oonaan	Plue In	digo Dye	Point Pollen	
Materials	Sugar	Colloida	al Silica	Diue III	aigo Dye	Polleli	Granular
	Atomic			_	A.C. Fine Tes	t Dust	Activated
	Radius						Carbon
				Asbestos	Mill	ed Flour	
				1300303	LIVIIII		
Process	Reverse Osmosis	Ultrafil	tration			Particle Filt	ration
for		Chtrain					
Separation	Nanofi	ltration		Microfiltration			

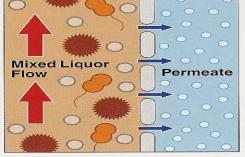
Hollow Fiber Membrane Range

MEMBRANE CONFIGURATIONS

Reinforced Hollow Fiber

Flat Plate Sheet

Non-Reinforced Hollow Fiber



Spiral Wound Sheet

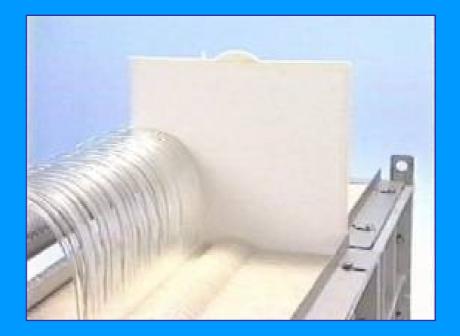
FLAT SHEET TECHNOLOGY

44Cross Flow Filtration

Mixed liquor flows parallel to the membrane surface, while water permeates through the membrane.

Cross flow prevents the membrane surface from fouling.

Immersed Membrane


•Microfilter (0.4 Nominal Pore Size)

•PVC Membrane Chemistry.

•Recognized for Title 22 in California (Water Re-use)

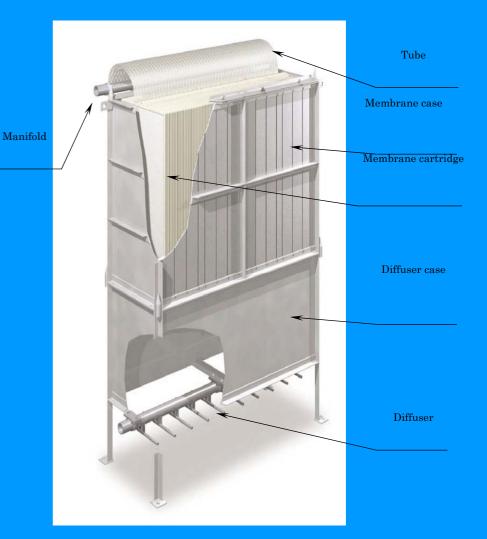
MEMBRANE PLATES

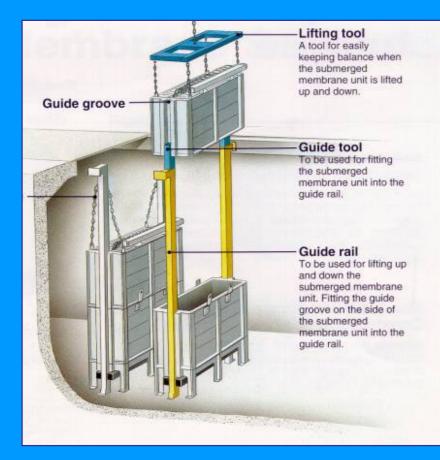
- Both types of cartridges are placed into the case as shown.
- Both types of cartridges are used for the same type applications.

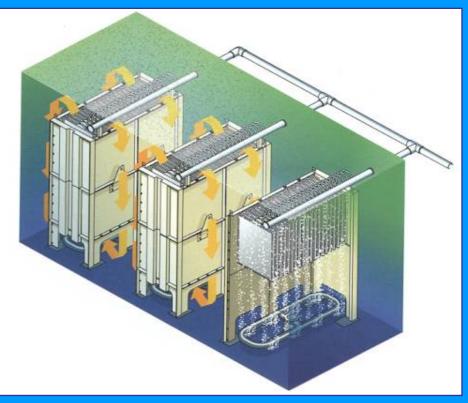
FLAT SHEET CONFIGURATION

K-400 Double Stack

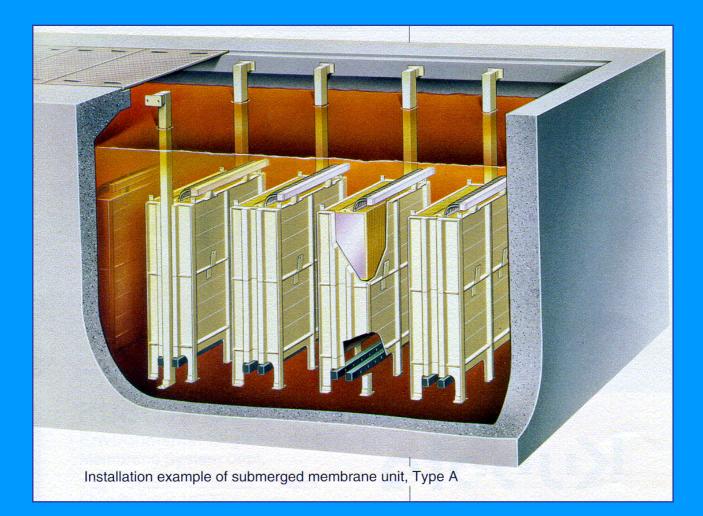
Separate Headers for top & bottom membranes


E-150 Single Stack


FLAT SHEET MEMBRANES

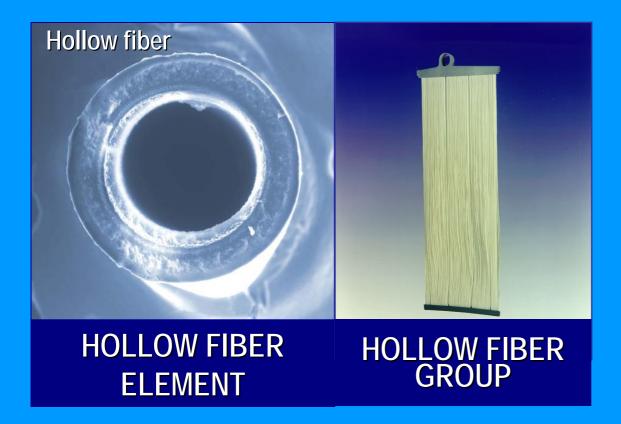


Single Plate Membrane Case


INSTALLATION AND ORIENTATION

Single Plate Membrane Case

FINAL ARRANGEMENT


Single Plate Membrane Case

HOLLOW FIBER CONFIGURATIONS

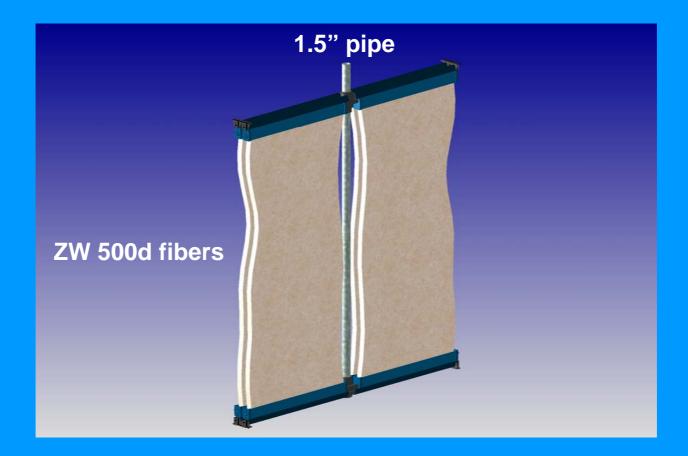
- Minimal prescreening
- Infrequent cleaning
- Mild cleaning required to keep fiber exterior clean

HOLLOW FIBER TECHNOLOGY

•Reinforced Hollow Fiber

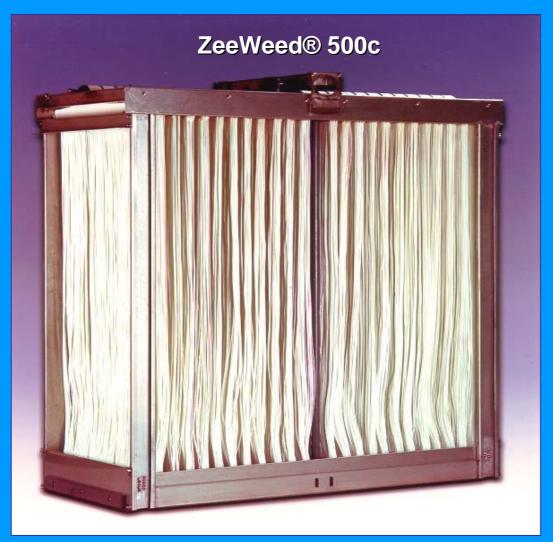
•NSF Certified Ultrafiltration (UF)

•Outside – In Flow

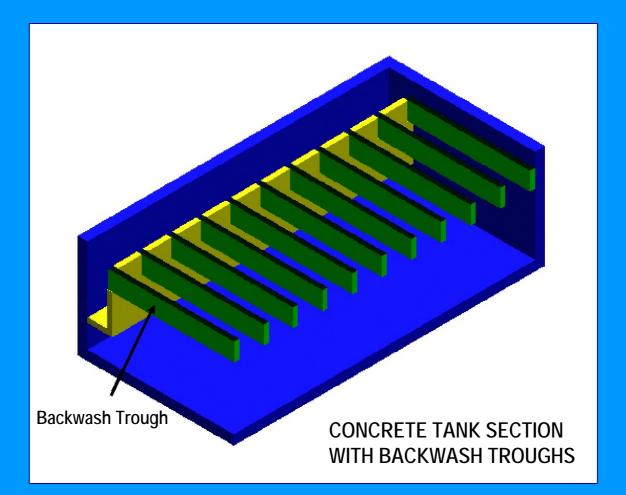

•Immersed Shell-less Technology

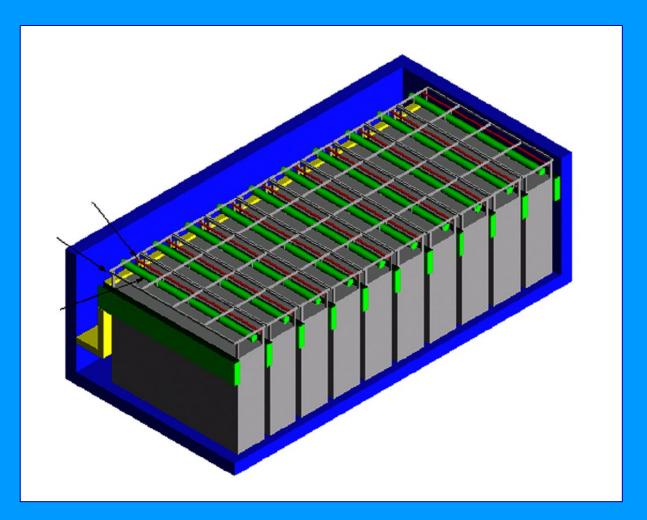
•Recognized for Title 22 in California (Water Reuse)

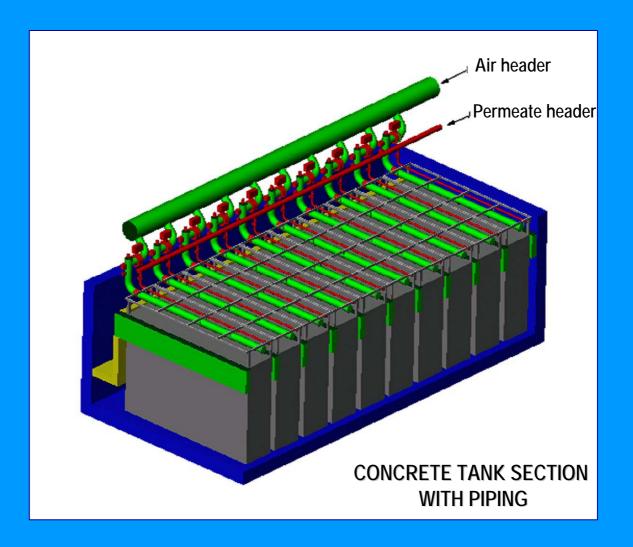
HOLLOW FIBER MAGINFICATION

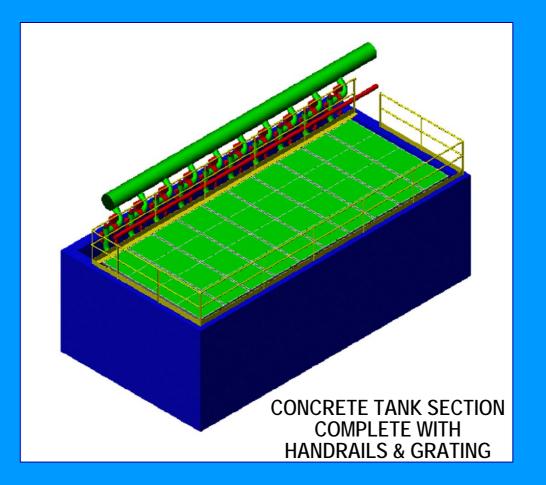


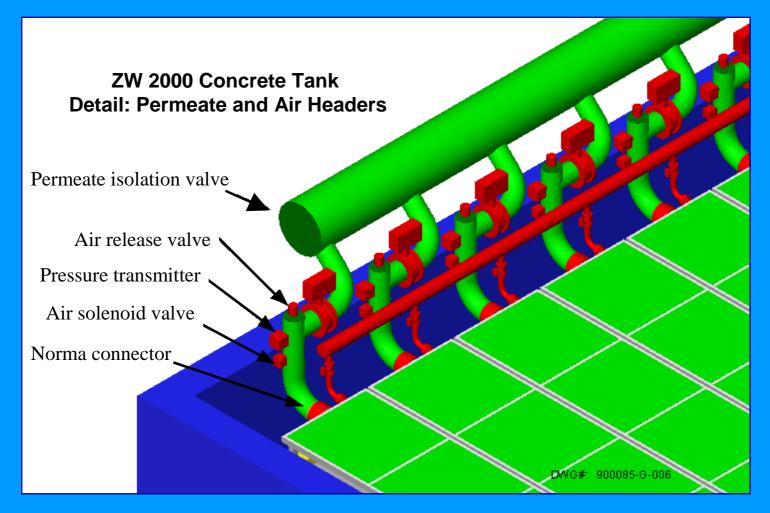
BASIC HOLLOW FIBER MEMBRANE MODULE

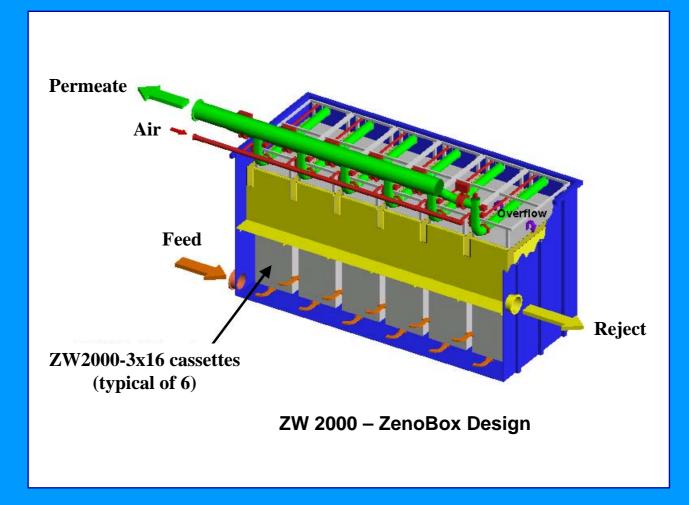


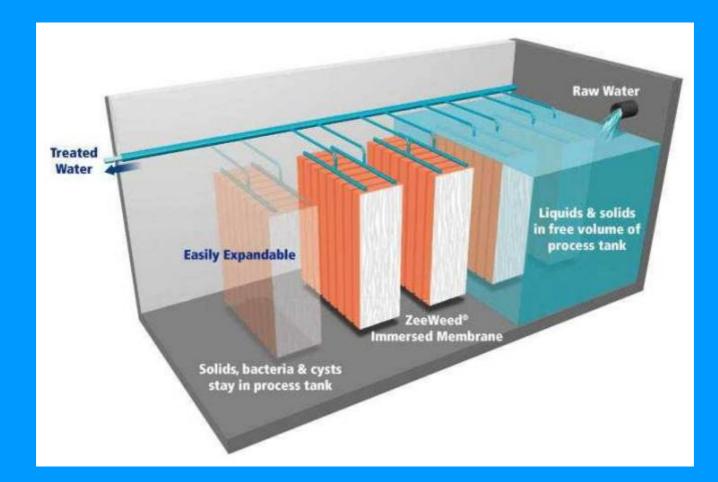

Cassette Building Block (4 Hollow Fiber Elements)

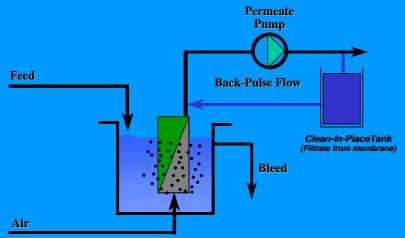

HOLLOW FIBER SLIDING ELEMENT ARRANGEMENTS










FINAL ARRANGEMENT

BACKPULSE CAPABILITY

Reinforced Hollow Fibre

- Full Backpulse Capability (if needed) to control fouling
- Air Scouring is used to control fouling

Flat Sheet

- Unable to backpulse membranes
- Air Scouring is used to control fouling

MEMBRANE CLEANING

Reinforced Hollow Fiber

- Up to 2000 ppm
 NaOCI
- Citric Acid
- Maintenance Cleaning once per 1-2 weeks
- Recovery Cleaning 2-3 times per year

Flat Sheet

- Up to 5000 ppm NaOCI
- Oxalic Acid
- Recovery Cleaning
 2-3 times a year

BASIC MEMBRANE TERMINOLOGY

• Flux

- Flow rate per membrane area
- Measured as Liters per m² per hour (Imh) or gallons per ft² per day (gfd)
- Trans-membrane Pressure (TMP)
 - Pressure difference across the membrane
 - Measures the relative degree of membrane fouling
- Permeability
 - Flux rate per unit pressure (Imh/bar or gfd/psi)

ACTUAL CASE STUDY

- Project Name: Almarai CPP2 ETP
- Location : Alkharj Haradh Road
- Type : Dairy Waste Treatment
 - The Existing conventional system handles maximum peak flow of 2000 m3/day and 4100 KgCOD/day
 - The upgrade strategy is to allow to handle the following design, keeping minimum footprint and optimum cost.

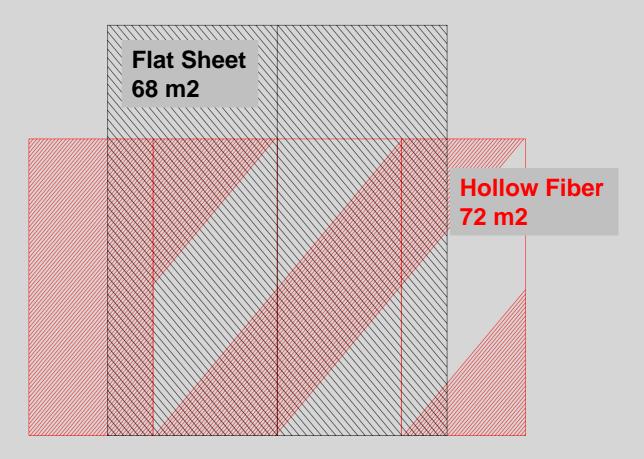
ALMARAI DESIGN CRITERIA

	20	11	2016		
	Average	Peak	Average	Peak	
CPP1, Volume m ³ /day	1,520	1,900	1,940	2,430	
CPP2, Volume m ³ /day	1,040	1,300	1,340	1,670	
Total Volume m ³ /day	2,560	3,200	3,280	4,100	
CPP1, Load kgCOD/day	4,800	7,000	5,640	8,550	
CPP2, Load kgCOD/day	2,200	3,000	2,760	3,450	
Total Load kgCOD/day	7,000	10,000	8,400	12,000	

DESIGN COMPARISON

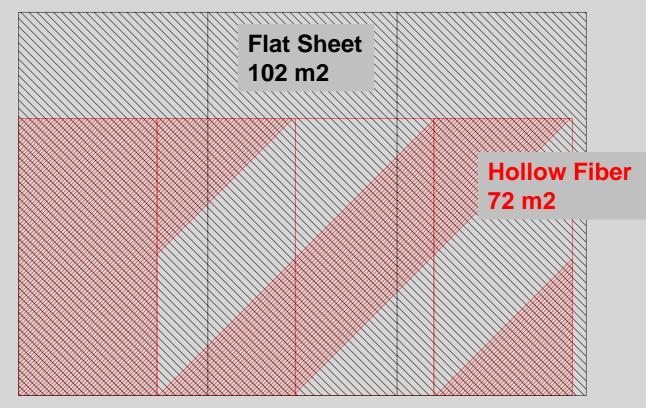
No.	Parameter	Hollow Fiber	Note	Flat Sheet	Note
	Design Basis				
1	Average flow 2011	2,560 m3/day	permeate	2,560 m3/day	feed
2	Peak flow 2011	3,200 m3/day	permeate	3,200 m3/day	feed
3	Average flow 2016	3,280 m3/day	permeate	3,280 m3/day	feed
4	Peak flow 2016	4,100 m3/day	permeate	4,100 m3/day	feed
5	Average COD 2011	7,000 Kg/day		7,000 Kg/day	
6	Peak COD 2011	10,000 Kg/day		10,000 Kg/day	
7	Average COD 2016	8,400 Kg/day		8,400 Kg/day	
8	Peak COD 2016	12,000 Kg/day		12,000 Kg/day	
9	Liquid feed temperature	20 °C		37 °C	
10	Max liquid feed Temp.	42 °C		42 °C	

MEMBRANE OFFER COMPARISON


No.	Parameter	Hollow Fiber	Note	Flat Sheet	Note
	Membranes spec				
1	Membrane type	ZeeWeed 500C		EK- 400	
2	unit surface area	23 m ²		320 m ²	
3	No. of units per cassette	22		1	400 memb
4	No of cassets per train	3	expandable to 4	6	expandable to 8
5	no of trains	4		2	
6	Total effective area	6072 m ²		3840 m ²	
7	pore size	0.04 um		0.4 um	0.01 operation
8	Design Net flux at Average flow	17 L/m2.hr	0.408 m3/m2.day	0.67 m3/m3.day	27.9 L/m2.hr
9	Design Net flux at Peak flow	21.7 L/m2.hr	0.5208 m3/m2.day	0.83 m3/m2.day	34.5 L/m2.hr
10	Design net flux at chemical cleaning		0.5448 m3/m2.day (one		37.037 L/m2.hr (one deck
10	(Average Flow)	22.7 L/m2.hr	train - 3 cassettes)	0.89 m3/m2.day	- 3 units)
11	Design net flux at chemical cleaning (Peak		0.7026 m3/m2.day (one		46.25 L/m2.hr (one deck -
	Flow)	29.27 L/m2.hr	train - 3 cassettes)	1.11 m3/m2.day	3 units)
12	Maximum TSS in MBR tank	15,000 mg/l		20,000 mg/l	

EQUIPMENT COMPARISON

No.	Parameter	Hollow Fiber	Note		Flat Sheet	Note
	Equipment spec					
1	MBR air blowers	3 No. (2d/1s) - 1367 Nm3/hr @ 31 Kpa - VSD controlled (1025 Nm3/Hr for 2011)		1250	(2duty/1std. by) - Nm3/hr @ 55 Kpa - ontroller	
2	Recycle pumps	4 no. (1 for each tank) - 274 m3/hr @ 120 Kpa TDH (221m3/hr for 2011)		3 no	. 39 I/s @ 2m Head	
3	Vaccum pumps	2nos 17m3/hr @74 Kpa vaccum			N/A	
4	Permeate pumps	4 nos. one for each tank - duty point ranges from 31 m3/hr @ 105 kpa TDH to 72 m3/hr @ 105 Kpa TDH			N/A	


MBR BASIN COMPARISON

No.	Parameter	Hollow Fiber	Note	Flat Sheet	Note
1	MBR Tanks	4 Nos (6mX3mX3.5m)	LXWXH	2 Nos(8.3mX4.1mX4.8m)	LXWXH

MBR BASIN COMPARISON

For same average flux consideration(0.408 m3/m2.day), Flat Sheet would require : (2560 m3/day)/[(320 m2)*0.408(m3/m2.day)]= 19.6 elements, say 18 elements , which would result in a third basin as follows

THANK YOU

Q & A