AL-KAWTHER INDUSTRIES LTD

Presentation On

Recycle Of Industrial Wastewater With Media Filtration And Reverse Osmosis

By

Al- Kawther Industries Ltd. March 2004

INTRODUCTION

EFFLUENT DISCHARGE STANDARDS

₩MOI&E (MOWE)

≭ MEPA

ROYAL COMMISSION... etc

MINISTRY OF INDUSTRY& ELECTRICITY(MOI&E) STANDARDS

SI. No. Parameters		Effluent	
1	PH	5 to 11	
2	EC	3200	
3	SS mg/L	400	
4	COD mg/L	810	
5	TDS mg/L	2100	
6	Chloride mg/L	600 to 1000	
7	PO4 mg/lit	10	
8	Oil & Grease	100	

MEPA EMISSION Standards for Discharge of Effluent to a Surface Water Body

Parameter Discharge Limit			
	Discharge Limit		
Floatables MHPA	Noneandards		
Total Suspended Solids			
Ph	6 to 9		
Temperature	Determined case by case		
Turbidity	75NTU		
BOD	25mg/lit		
COD	150mg/lit		
ТОС	50mg/lit		
TKN	5mg/lit		
Total Chlorinated Hydro Carbons	0.1mg/lit		
Oil and Grease	8mg/lit		
Phenols	0.1mg/lit		
Ammonia(as nitrogen0	1mg/lit		
Arsenic	0.1mg/lit		
Cadmium	0.02mg/lit		
Chlorine residual	0.5mg/lit		
Chromium (total)	0.1mg/lit		
Copper	0.2mg/lit		
Cyanide(total)	0.05mg/lit		
Lead	0.1mg/lit		
Mercury	0.001mg/lit		
Nickel	0.2mg/lit		
Phosphate(total as Phosphorus)	1mg/lit		
Zinc	1mg/lit		
Total Coliform	1000MPN per 100ml		

Royal Commission Environmental Regulations (September 1999)

TABLE 3E IRRIGATION WATER QUALITY STANDARDS AT THE POINT OF DISCHARGE TO IRRIGATION SYSTEM

ARAMETER ⁽¹⁾ UNITS Maximum Allowable		Monthly Average	
PHYSICAL			
Floating Particles	mg/m ²	NIL	NIL
Temperature	Δ°C	10	
Total Suspended Solids	mg/l	15	10
Total Dissolved Solids	mg/l	2000	1750
Turbidity ⁽²⁾	N.T.U.	5	2
CHEMICAL			
Aluminium	mg/l	25	15
Ammonia, Total as N	mg/l	40	15
Arsenic	mg/l	0.5	0.1
Barium	mg/l	2.0	1.0
BOD ₅	mg/l	50	25
Boron	mg/l	2.5	0.75
Cadmium	mg/l	0.05	0.01
COD	mg/l	350	150
Chloride	mg/l	1000	500
Chlorine Residual ⁽³⁾	mg/l	0.5 (min)	-
Chromium	mg/l	1.0	0.1
Cobalt	mg/l	2.0	0.1
Copper	mg/l	0.5	0.2
Cyanide	mg/l	0.1	0.05
Dissolved Oxygen ⁽⁴⁾	mg/l	2.0 (min.)	-
Dissolved Oxygen ⁽⁴⁾ Fluoride ⁽⁵⁾	mg/l	15	5
Iron	mg/l	10	5
Lead	mg/l	0.5	0.1
Manganese	mg/l	1.0	0.02
Mercury	mg/l	0.005	0.001
Nickel	mg/l	0.5	0.2
Oil and Grease	mg/l	15	8
pH	pH units	6 - 9	6 - 9
Phenols	mg/l	1.0	0.10
Phosphorus, total as P	mg/l	30	20
Sodium	mg/l	1000	500
Sodium Adsorption Ratio (SAR)	SAR units	20	10
Sulphate	mg/l	800	300
Sulphide	mg/l	0.1	0.05
Total Kjeldahl Nitrogen	mg/l	60	35
Total Organic Carbon	mg/l	150	50
Zinc	mg/l	5.0	2.0

continued

TABLE 3E (cont.) IRRIGATION WATER QUALITY STANDARDS AT THE POINT OF DISCHARGE TO IRRIGATION SYSTEM

VARIABLE	UNITS	Maximum Allowable	Monthly Average
BACTERIOLOGICAL			
Total Coliforms ⁽⁶⁾	MPN/100 ml	23(7)	2.2
PARASITOLOGICAL			
Nematodes	No./10 ml	1	-
Protozoan Cysts	No./10 ml	1	-
Platyhelminths (Worms)	No./10 ml	1	

Notes:

1) For any parameters not identified, specific standards will be determined on a case-by-case basis 2) Maximum turbidity not to be exceeded more than 5% of the time in the 24-hour period.

3) Free chlorine residual after 30 minutes of contact

4) Dissolved oxygen level is a minimum concentration requirement

5) Fluoride levels assume well-drained sandy soil for irrigation which will not be used for forage

6) Reclaimed water shall at all times be adequately disinfected, oxidized, clarified and filtered.

7) The wastewater shall be considered disinfected if the median number of coliform organisms in the effluent does not exceed 2.2 total coliforms MPN per 100 ml, as determined from the results of the last seven days for which analyses have been completed, AND if the number of coliforms does no exceed 23 total coliforms per 100 ml in any sample.

Pollutants in Industrial

Wastewater

** Organic Substances
** Inorganic Substances
** Acid and Alkali
** Toxic Substances
** Color Producing Substances
** Fat,Oil & Grease etc

Recycling Of Carpet Factory Wastewater

PILOT PLANT

INTRODUCTION

Unit Operations & Unit Process

***** Physical

***** Chemical

#Biological

Coagulation &

Flocculation

METHODS OF TREATMENT OF WASTEWATER

* Primary:

***** Secondary:

***** Tertiary:

Utilizes Physical separation Process. Achieves a low degree of treatment. Is normally used in combination with higher levels of treatment.

Uses one or combination of chemical or biological. Anaerobic- Aerobic and Aerobic Treatment. Achieves a moderate degree of treatment. Produces effluent that is normally suitable for reuse in non- potable application.

Achieves a high degree of treatment. Produces effluent that is suitable for nearly all nonpotable applications.

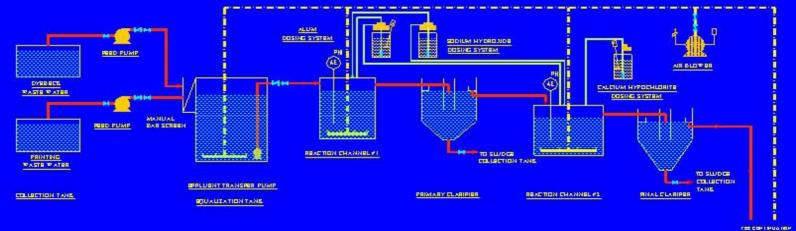
PRETREATMENT

Wastewater Characteristics

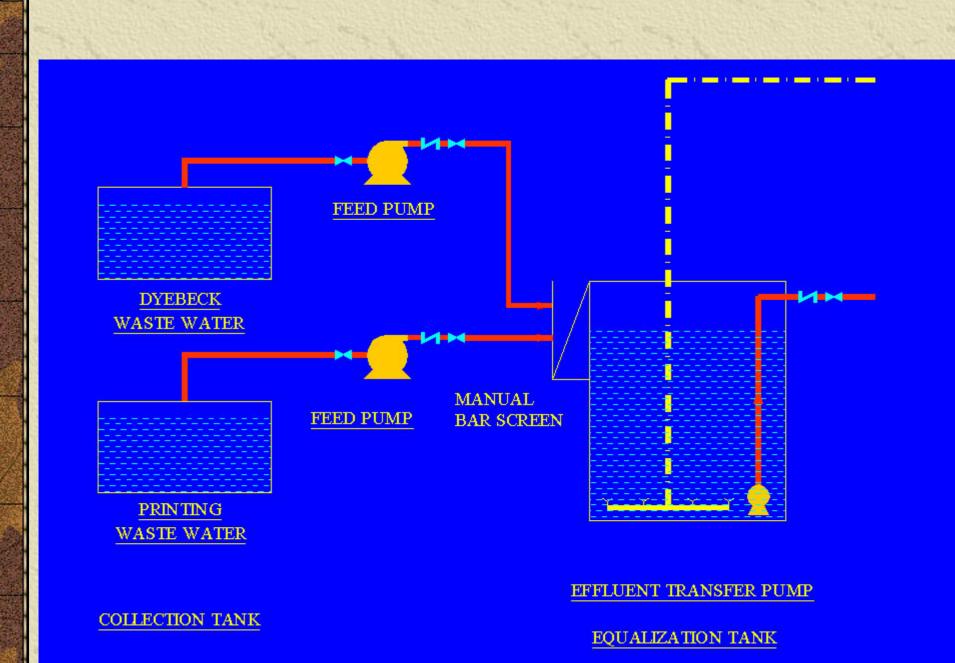
Parameters	Equalization Primary Clarifier		Secondary Clarifier	Carbon Filter	RO Product water
ACH STORE	Tank	Outlet	Outlet	Outlet	at 80% recovery
TDS mg/L	1600	1752	1780	1766	43.4
SS mg/lit	82	21	11	3	0
COD mg/L	1159	463	7	<1	0
Ph	4.7	9	7	8.2	5.5

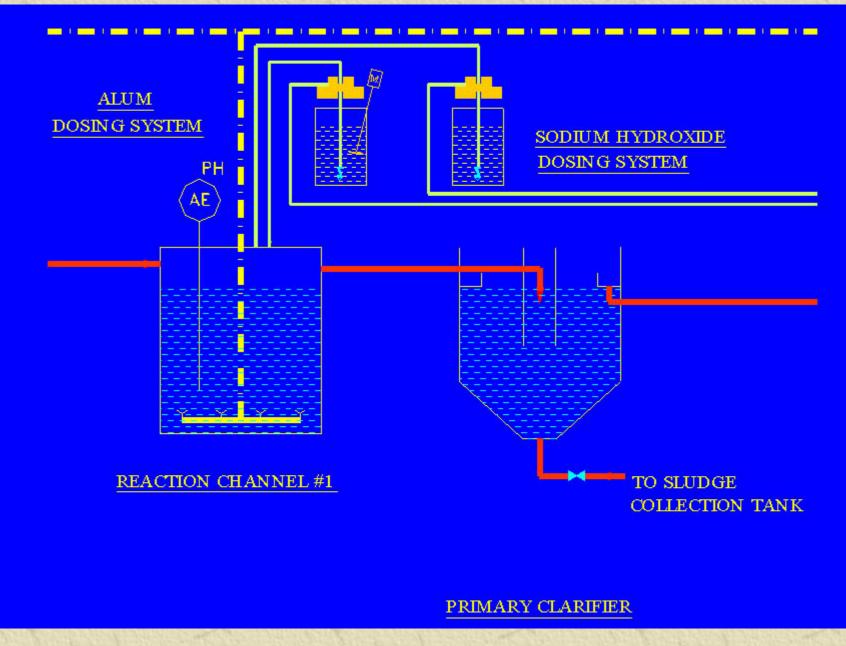
Water& Wastewater Quality

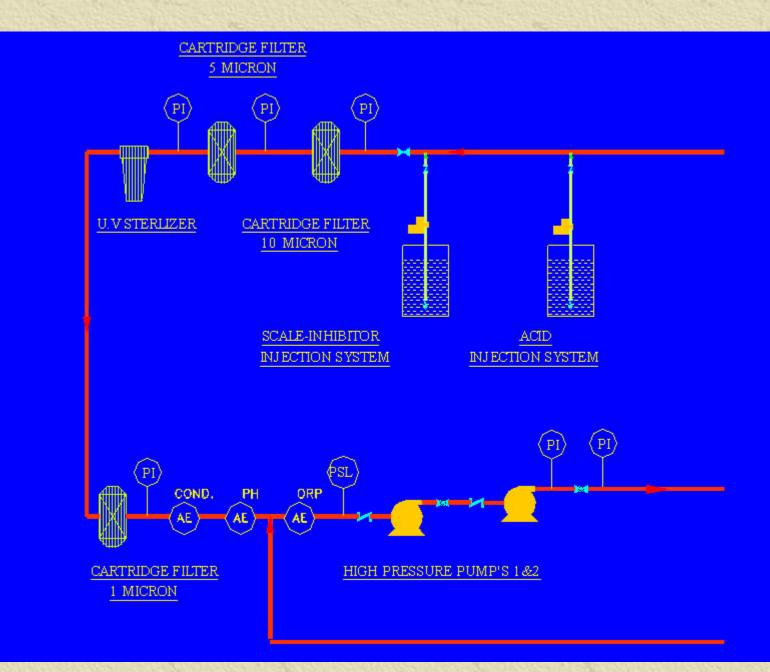
SI.	lon	Water quality Used	Wastewater quality	RO Permeate quality
No.	Concentration	for Carpet Process	After Carpet Process	from Pilot Plant
1	Sodium mg/L	22.3	393.0	17.0
2	Potassium mg/L	2.4	4.3	0.1
3	Calcium mg/L	3.1	308.0	2.4
4	Magnesium mg/L	1.4	37.0	0.5
5	Chloride mg/L	42.0	412.0	8.5
6	Sulphate mg/L	1.5	200.0	2.0
7	Nitrate mg/L	1.5	31.0	8.0
8	Bicarbonate mg/L	2.1	112.0	4.2
9	Silica mg/L	0.3	6.2	0.7
10	TDS mg/L	76.0	1503.0	43.4
11	Ph	7.3	4.6	5.5

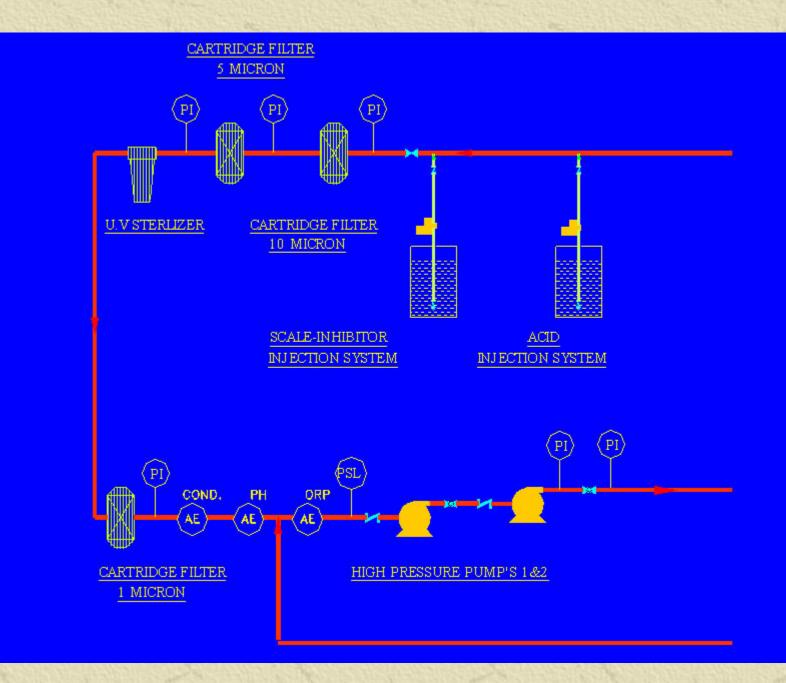

PROCESS DESCRIPTION

***** Chemical Treatment

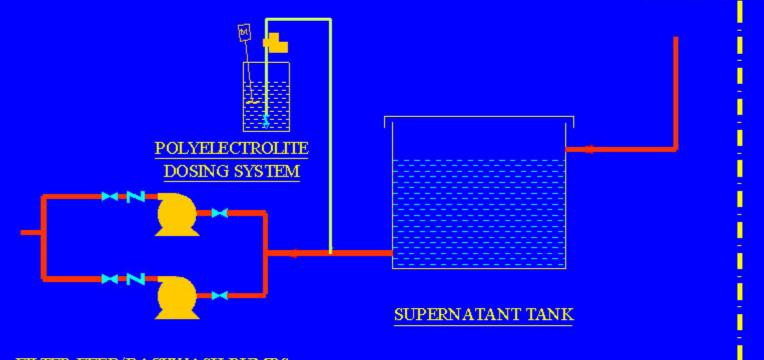

***** Media Filtration

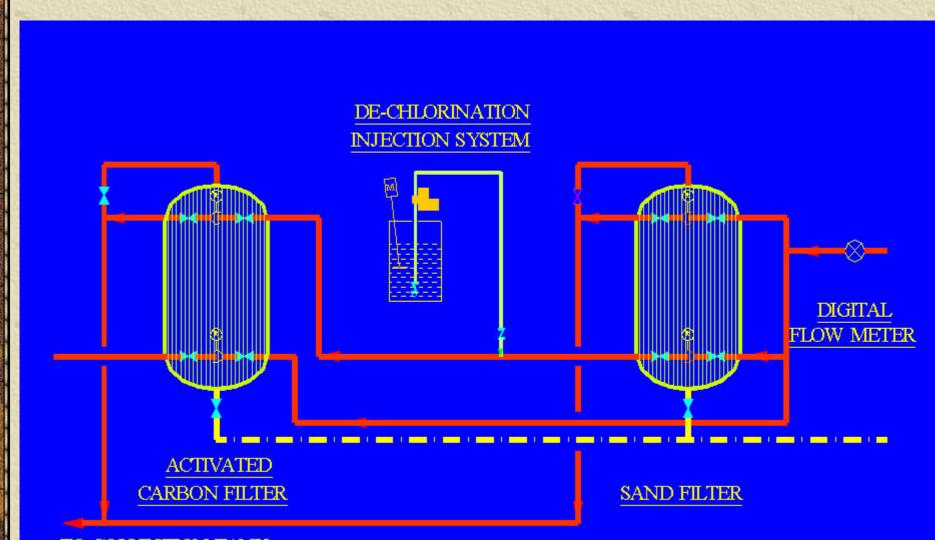

***** Reverse Osmosis

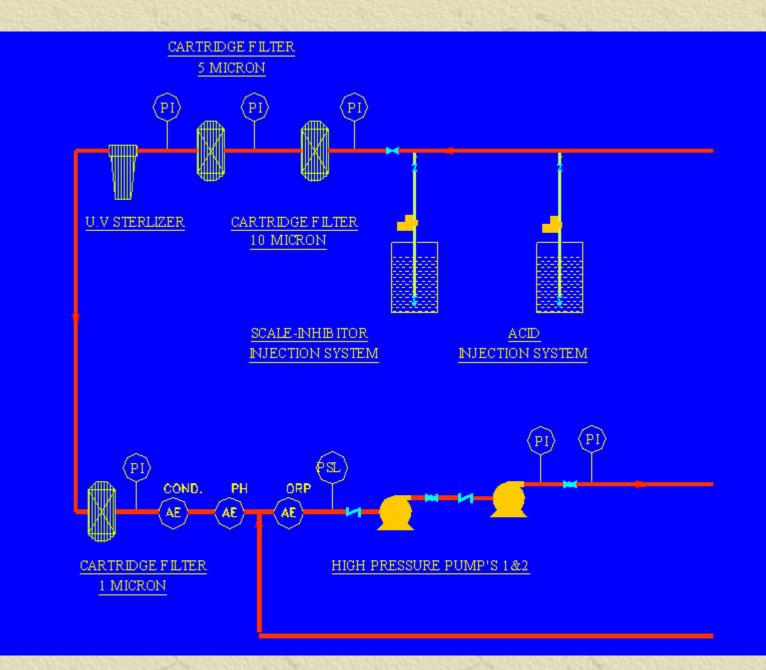

FLOW DIAGRAM 1ST SHEET

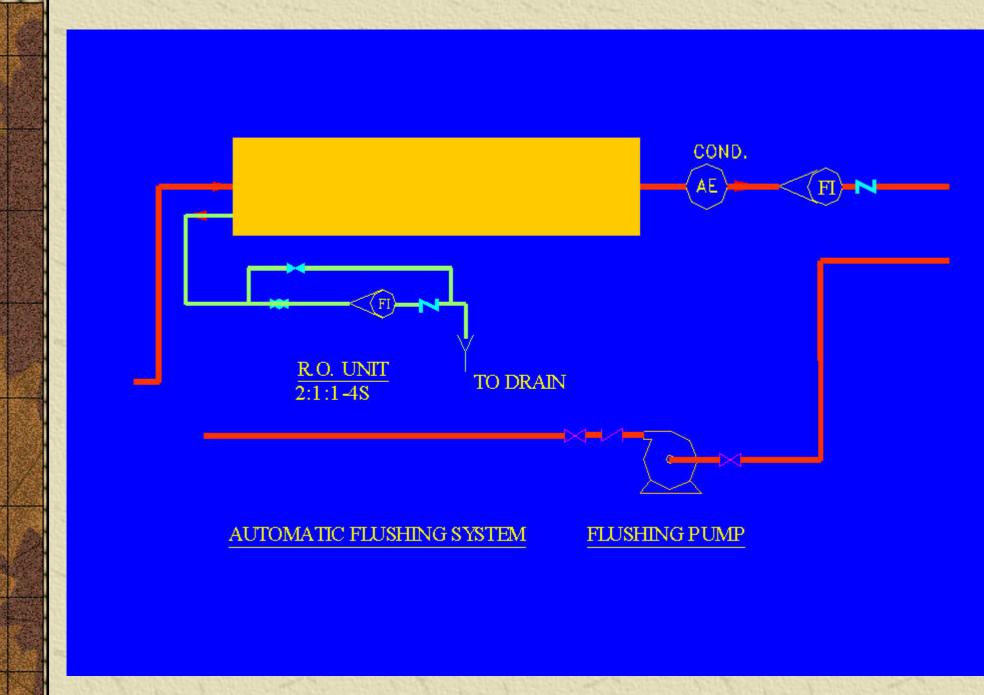


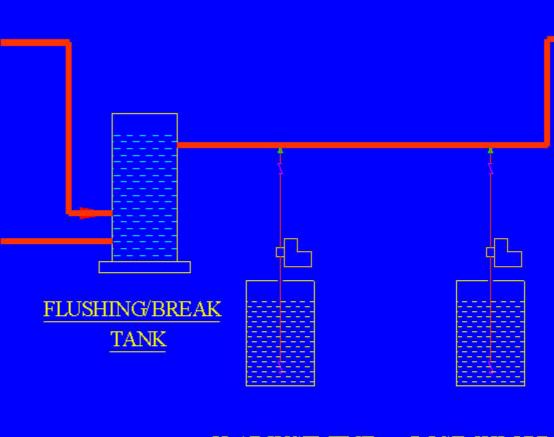
2.535504030551






FROM FIRST SHEET




FILTER FEED/BACKWASH PUMPS

TO COLLECTION TANK

TO TREATED WATER TANK

pH-ADJUSTMENTPOST-CHLORINATIONINJECTION SYSTEMINJECTION SYSTEM

Instrumentation

** Pressure Gauges
** Flow meters
** pH meter
** Conductivity meter
** ORP meter

Plant Performance

- The plant was operated more than eight months continuously providing water for carpet process without any major problem.
- Coagulant acts better at pH 9 in first stage chemical treatment and pH 7 in second stage chemical treatment.
- ★ Water of SDI <3 was obtained by dosing cationic polymer 0.6mg/lit at pH 7.4</p>
- SDI 2.5 3 after Cartridge Filter outlet
- RO System recovery has found to be well within limit and always meeting the designed figure.

Plant Performance...continued

- Pilot Plant is working satisfactorily with 20% routine variations in the characteristics of the carpet factory wastewater.
- Product water TDS is less than the designed value, 100 mg/l
- ✷ RO System recovery optimum at 80%
- The Antiscalant suggested is performing efficiently. So the frequency of cleaning the membrane considerably decreased.
- Treated water quality complying with the parameters stipulated by(MOI&E) standards, MEPA& Royal commission standards.

[★] Save Fresh Water Feed about 70% (SR 7/m³).

Save Cost Of Disposal Of Wastewater (SR 2.17/m³) with Corresponding Benefit to the Environment.

Treated Effluent Reuse

Carpet Process

Gardening
Toilet Flushing
Machine Cleaning
Floor washing

Daily Power Consumption

SI.	Item	Connected	Duty	Working	Kwhr
NO	and the second	Load Kw	Kw	Hours	1.350.5
1	Dyebeck Effluent Transfer Pump	1 x 0.75	1 x 0.75	20	15
2	Printing Effluent Transfer Pumps	1 x 0.75	1 x 0.75	20	15
3	Air blower	1 x 1.5	1 x 1.5	24	36
	Alum dosing system	1x 0.25	1x 0.25	20	5
	Sodium Hydroxide dosing system	1x 0.25	1x 0.25	20	5
6	Poly Eloctrolite dosing system	1 x 0.007	1 x 0.007	20	0.14
7	Calcium Hypo chlorite dosing system	1 x 0.007	1 x 0.007	20	0.14
8	Filter Feed Pumps	2 x 0.75	1 x 0.75	20	15
9	Filter Backwash Pumps	2 x 0.75	2 x 0.75	1	1.5
10	De- Chlorination Inj System	1 x 0.007	1 x 0.007	20	0.14
11	Acid Injection System	1 x 0.007	1 x 0.007	20	0.14
12	Anti Scalant Injection System	1 x 0.007	1 x 0.007	20	0.14
13	High Pressure Pump	1 x 13.2	1 x 13.2	20	264
14	PH Adjustment system	1 x 0.007	1 x 0.007	20	0.14
15	Post Chlorination System	1 x 0.007	1 x 0.007	20	0.14
16	Mixers in all chemical tanks	10 x 0.175	10 x 0.175	20	35
	TOTAL Kwhr	2.6 19	al state to		392.48

Monthly Chemical Consumption

Sl.No	Item	Consumption
1	Alum	556 Kg
2	Sodium Hydroxide 49% soln.	269 lit
3	Poly Electrolyte	6.95 lit
4	Calcium Hypo Chlorite	11.2 Kg
5	Sodium Meta Bi Sulfite	33 Kg
6	Sulfuric Acid 98% soln	38.5 lit
7	Antiscalant	6.25 Kg
8	Sodium Hypo Chlorite	14.6 Lit
9	Cartridge Filters 10", 5", 1"	3 each

WATER COST

Equipment Amortization ₭ Energy Usage ***** Salaries and Wages **Spare Parts *** Consumption of Chemicals ***** Membrane Replacement **≭** Fuel, Oil and Lubricant **K** Cost of Operation and Maintenance

Cost Comparison

*** WWTP Capacity : 40m3/day (20 hour** operation in a day) **1)Cost of fresh water for process(appxr)** $\{(50m3 \times SR 7/m3) + 40m3 \times SR 1.03/m3\}$ SR 391.20/- (SR9.78/m3) 2)Waste Water Recycling Pant Operating cost/ day { Chemicals(SR 56.36)+Electricity (appxr. 392.48Kwhr x SR 0.12/m3)+ Sludge& brine disposal (15.6m3/day x SR2.17/m3)= SR 137.30/- (SR3.43/m3)

Cost Comparison (Continued)

3) Cost of total wastewater disposal by tanker (without treatment)

55.6m3/day x SR 2.17/m3 = SR 120.65/day = SR 3016.25/month = SR 36195/year

SAMPLES FROM DIFFERENT TREATMENT STAGES

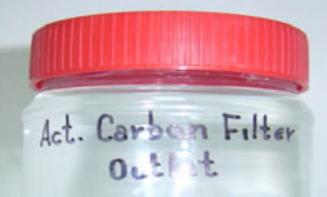
TESTED

REACTINE REACTINE REACTION Act. Curbon Fib R. C. PERMENT

29 2 2004

SAMPLE FROM EQUALIZATION TANK

SAMPLE FROM REACTION TANK - 1


2 2004 29

SAMPLE FROM REACTION TANK-2

2 2004 29

FROM ACT. CARBON. FILTER OUTLET

2 2004 29

SAMPLE FROM RO UNIT OUTLET

R.O. FE MEATE

AL-KAWTHER INDUSTRIES LTD

DISCUSSION