Design and Operation of Hybrid Aeration System

SAWEA 2005

Marc Rhodes – Envirex Products

It is generally agreed that fine bubble aeration has the highest oxygen transfer efficiency of any aeration device in clean water.

Some typical empirically measured value:

- Fine Bubble Aerator Clean Water Efficiency (SAE) = 4.4 kg/hr/kW
- Mechanical Aerator Clean Water Efficiency (SAE) = 1.9 kg/hr/kW

However, efficiencies are different in wastewater

In wastewater, contaminants affect aeration efficiencies by altering the process variables

- Variables affecting oxygen transfer rate during aeration include:
- alpha = <u>KLa Waste water</u>

KLa Clean water

= <u>mass transfer coefficient in waste water</u>

mass transfer coefficient in clean water

- Alpha is the most variable factor includes affects of loading, suspended solids, mixing, etc.
- **field process dissolved oxygen (D.O.) desired to be maintained.**
- Beta (saturation factor corrects for dissolved solids in wastewater)
- Theta (corrects for temperature)
- Barometric pressure

SAWEA

2005

Slide 3

Many variables are different in wastewater than in clean water therefore,

Aeration equipment performs differently in clean water than wastewater

Some variables change throughout the wastewater process

So, aeration equipment performs differently at different locations in the wastewater process

SAWEA 2005 Each type of aeration equipment is uniquely affected by the process variables

Alpha

Most important process variable affecting aeration efficiency is Alpha:

Variations in Alpha are caused primarily by surfactants in wastewater

- Surfactant concentrations differ throughout the wastewater treatment process due to breakdown by biological activity
 - Alpha values of 0.2 to 1.2 are reported

 Alpha above 1.0 are for mechanical aeration in the presence of surfactants in wastewater

Effect of Surfactants on

SIEMENS

Diffused aeration

- Surfactant molecules form a rigid surface on bubbles
- Aeration difficulty decreases with smaller bubbles
 - Lower Alpha for fine bubble than for coarse bubble

Mechanical aeration

- Surfacants reduce surface tension resulting in formation of smaller liquid droplets
 - Increases available surface area for transfer
 - Alpha factors can be greater than 1.0

Effect of Surfactants on:

Fine Bubble Aeration at Front of Process

Relatively high concentration of surfactants

Overall effect is decreased oxygen transfer efficiency

Effect of Surfactants on:

Fine Bubble Aeration Further Into Process

Reduced concentration of surfactants

 Overall affect is increased oxygen transfer efficiency

Effect of Surfactants on:

Mechanical Aeration at Front of Process

Relatively high concentration of surfactants

Decreased water droplet size

 Increased air transfer efficiency from air to droplet

Effect of Surfactants on:

Mechanical Aeration Further into Process
Reduced concentration of surfactants

Increased water droplet size

Decreased air transfer efficiency from air to droplet

Diffused vs Mechanical Aeration Effect of Tank Length on Alpha

F.B.A. = Fine Bubble Aeration M.A. = Mechanical Aeration

Depending on where in the process aeration equipment are used:

Fine Bubble aeration

Mechanical aeration

Aeration Efficiencies Change

SAWEA 2005 Location of use determines optimal choice of equipment

Another Important Process Variable is Field Dissolved Oxygen (D.O.)

Oxygen Transfer rate is ∞ (C* - C)

- The larger the difference between the set point D.O. (C*) and the field process D.O. (C), the more efficient the transfer process is.
 - Important because the driving force in aeration i.e. difference between desired D.O. and aeration set point determines rate of oxygen transfer.
 - One of the benefits of aerated anoxic more on this to come.

A Quick Review of Anoxic Reactors

- No oxygen added to the reactor
- Mixing is achieved by mechanical mixers
- Nitrates are pumped from aerobic zone back to anoxic zone for denitrification (internal recycle)
- 4Q internal recycle required to achieve 80% denitrification

A Typical Schematic for Conventional Denitrification using Anoxic Reactors

Aerated Anoxic Reactors

Definition

- Reactor aerated to provide for aerobic processes with oxygen supplied less than the full demand.
- Because of constant oxygen deficit condition
- Provides anoxic conditions

 O_2 Supplied < 75% of O_2 Demand

Typical Schematic using Aerated Anoxic Reactors for Denitrification

SIEMENS

Benefits of Aerated Anoxic Reactors

SIEMENS

- Aerating under low oxygen conditions results in lower Specific Oxygen Requirements (SOR) due to higher transfer efficiency.
- No mixers required
- No internal recycle required (unless high levels of denitrification are required)
- Simultaneous Nitrification/Denitrification
 - Immediate source of nitrates for denitrification
 - Possible short-cut nitrification/denitrification pathway

Some treatment systems utilize aeratedanoxic for high aeration efficiency:

Orbal

Bionutre

Vertical Loop Reactor

DO Profile in Orbal – Multichannel Oxidation Ditch

SIEMENS

SAWEA 2005

Horizontal disk aerators in action with little spray or aerosol formation

Orbal Aeration Disk

Bionutre

SIEMENS

- Complete mix reactors in series using diffused air.
- Stratified DO similar to Orbal

First	0 mg/L
Second	1 mg/L
Last	2 mg/L

- Disc-type fine bubble diffusers
- Provides high oxygen transfer efficiency under low process D.O. conditions.

Bionutre Process

Vertical Loop Reactor

SIEMENS

Brookfield, Ohio, USA

High aeration efficiency is achieved through using aerated-anoxic treatment.

Maximum aeration efficiency is achieved through using aerated-anoxic treatment and aeration equipment selected for optimal efficiency at the selected location within the process.

Envirex VertiCel Hybrid Aeration System

VertiCel System

- Combination of Orbal Disk aerators and Diffused Air aerators
- First: Vertical Loop Reactor with mechanical aerators
- Last: Conventional reactors with fine bubble diffusers
- Benefits from use of aerated anoxic treatment and highest efficiency aeration equipment for process location.

VertiCel System

SAWEA

2005

VertiCel System

SAWEA 2005

Mexico

Performance of Systems with Aerated Anoxic Reactors

Schematic of WWTP, Hammonton, NJ Orbal

2005

SIEMENS

Annual Data Summary Hammonton, NJ

SIEMENS

YEAR BOD ₅			TS	SS TKN		(N	NO ₃ -N Eff.	TN Eff.	TPO₄ Eff.
Inf. Eff. Inf. Eff.				f.	Inf.	Eff.			
Limi	t	5.0	30			N/A	3.0	N/A	3.0
95	353	1.6	369	3.4	35.1	1.2	1.71	2.93	2.07
96	332	1.2	383	1.6	37.0	0.47	0.96	1.44	1.18
97 Note	314 : All u	1.1 Inits ma	302 I/L	1.6	35.6	1.76	0.44	2.55	1.59

Power Consumption Comparison Summary

SIEMENS

Conclusion -

By selecting the most efficient aerator for each location and by using aerated-anoxic conditions,

- Mechanical aeration at head of process
- Diffused aeration further into process
- Aerated-anoxic treatment
- Able to achieve a high level of treatment and maximum process aeration (energy) efficiency.

SAWEA provides a 2005 efficiency

The VertiCel system (Vertical Loop Reactors with disc aerators followed by conventional fine bubble reactors) provides a simple process with high process aeration efficiency and offers common wall construction and relatively small footprint.

USFilter, Envirex's Experience with Aerated Anoxic Reactors

SIEMENS

Orbals

- Over 600 Installations worldwide
 - Preston, UK
 - Gwinnett County, GA
 - Hammonton, NJ,
 - McMinneville, OR

VLR

- Over 20 installations worldwide
 - Texas City, TX

VertiCel Aeration System

- 6 installations worldwide
 - Ratburana (BMA 3), Thailand
 - Nangkheim (BMA 3), Thailand
 - Gills Creek WWTP, IN
 - Cadeyreta, Mexico