

HORIBA, Ltd. International Sales Office P&E Team Kinta SEKIGUCHI

Ammonia Nitrogen (NH₄-N) Meter HC-200NH

Date: October 2017

© 2017 HORIBA, Ltd. All rights reserved. Explore the future

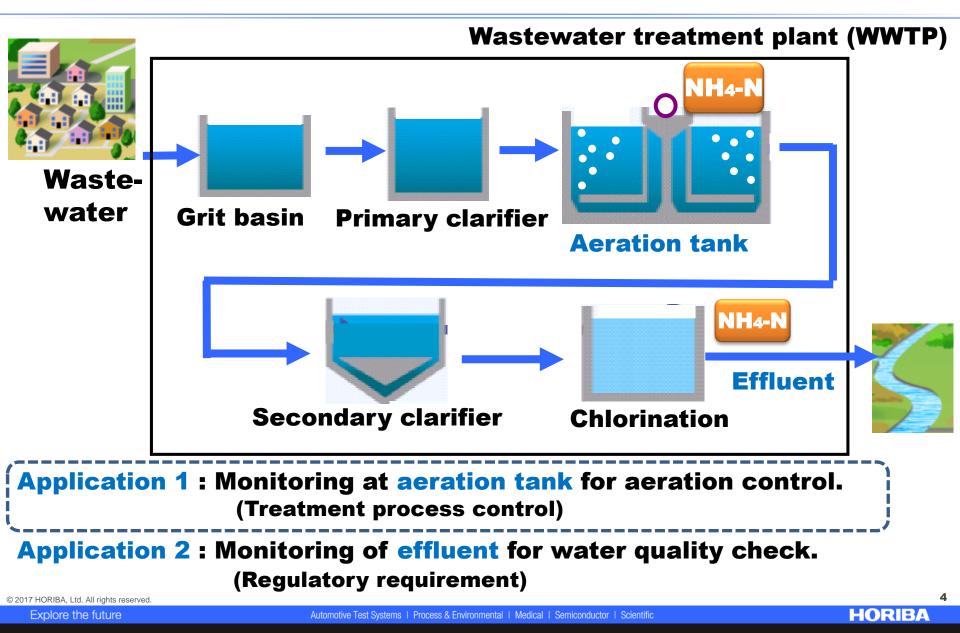
Outline

- Aeration control in Wastewater Treatment Plant
- Ammonia Nitrogen Meter
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - Drinking water treatment

Summary

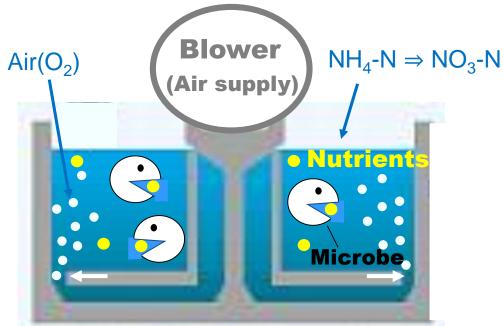
© 2017 HORIBA, Ltd. All rights reserved

Outline

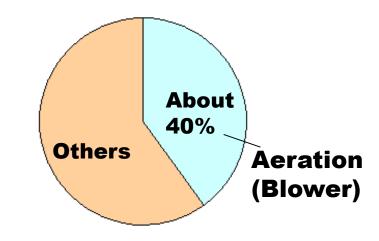

Aeration control in Wastewater Treatment Plant

- Ammonia Nitrogen Meter
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - Drinking water treatment

Summary



Wastewater treatment plant & NH₄-N



Biological treatment in aeration tank

Aeration tank: Removes nutrients(NH₄-N) by microbes

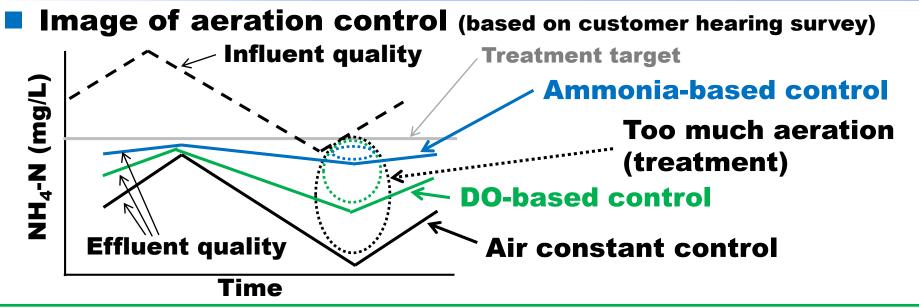
- Microbes removes nutrients.
- Air is supplied to activate microbes.

Rate of energy consumption in WWTP

(Rough estimate based on customer inquiry survey by HORIBA)

• Huge energy is consumed for the aeration.

Ammonia-based aeration control is expected to minimize energy consumption


© 2017 HORIBA, Ltd. All rights reserved.

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Aeration control

DO-based control : **DO** is indirect indicator of nutrient. Hence aeration with margin is necessary. Too much air when influent is cleaner.

Ammonia-based control : NH_{a} -N is direct indicator of nutrient. Hence the margin(extra air) can be minimized.

In Japan, some municipals have been researching that <u>10 to 30% reduction of</u>

energy consumption would be possible. (Result of HORIBA's hearing survey)

e.g. Electric bill of blowers in $100,000m^3/day$ plant is 1.1MUSD/year.

(Condition: 0.5kWh/1m³/day, 0.15USD/kWh, 40% of energy is consumed by blower)

n case of 30% energy reduction, 0.3MUSD/year can be saved. HORIBA

Explore the future

Market information

Market situation

- Some municipals in Japan try to reduce energy consumption of blower by NH₄-N monitoring.
- Some water treatment companies have been doing demonstration test of energy saving in WWTP by aeration control with NH₄-N and DO. (Government support project)

Requirement from users

- **Sensor life** (More than 6 months is desirable)
- Stability and reliability of the measurement (Especially low range)
- **Easy maintenance (All user maintenance is desirable)**
- Quick support and enough explanation when trouble

(*Information from customer hearing survey by HORIBA)

© 2017 HORIBA, Ltd. All rights reserved

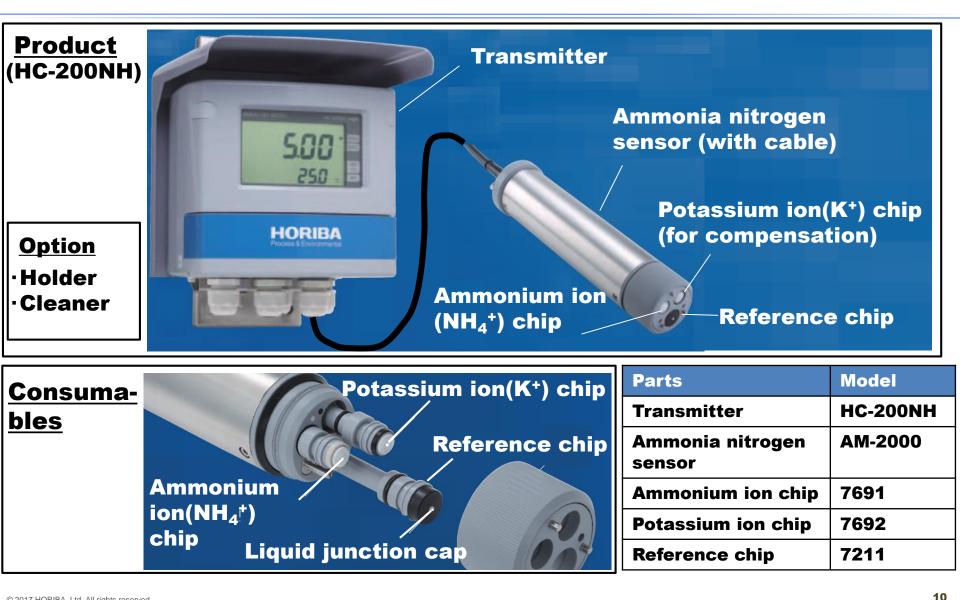
Outline

- Aeration control in Wastewater Treatment Plant
 - Ammonia Nitrogen Meter
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - Drinking water treatment

Summary

NH₄-N Measurement method

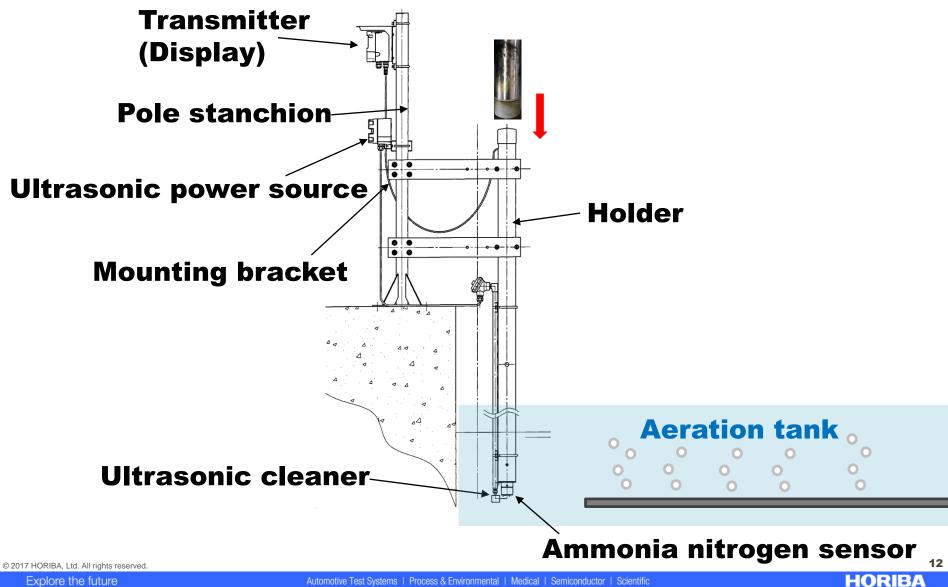
Method	Strength	Weakness
ISE (lon-selective electrode)	 Does not need reagent Direct immersion possible 	 Difficult to measure low range sample stably Influenced by interference factor, potassium ion and so on (Potassium compensation possible)
Gas sensitive electrode	Less influenced by interference factor	 Need reagent Sampling necessary
Colorimetric	•Less influenced by interference factor	 Need reagent Sampling necessary


ISE is widely used and suitable for real <u>time monitoring of aeration.</u>

© 2017 HORIBA, Ltd. All rights reserved.

Product components

© 2017 HORIBA, Ltd. All rights reserved.


Specifications

Principal	Ion-selective electrode(ISE) method	
Range	NH ₄ -N : 0 to 1000 mg/L Temperature : 0 to 40 °C	
Resolution	NH ₄ -N : 0.01 mg/L : 0.00 to 10.00 mg/L 0.1 mg/L : 0.0 to 100.0 mg/L 01 mg/L : 0 to 1000 mg/L Temperature: 0.1 °C	
Accuracy (Repeatability)	±3%±1digit, ±0.2 mg/L±1digit whichever is greater (Standard solution)	

© 2017 HORIBA, Ltd. All rights reserved.

Installation example

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

Features

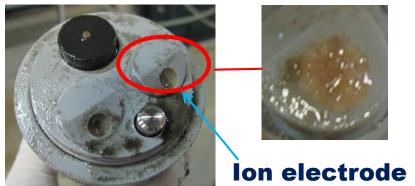
	Customer needs	HORIBA HC-200NH Features	
Measu- rement	Sensor long life (Resistance to fouling)	Feature 1 Protection film on ion selective membrane.	
		Feature 2 Anti-fouling by ultrasonic cleaning	
	Stability and reliability of the measurement	Feature 3 Optimized internal solution to the low-concentration sample	
Mainte -nance	Easy maintenance	Feature 4Unique Tech.Tool-free sensor chip replacement	
	Risk reduction of sudden sensor error	Feature 5 Sensor deterioration diagnosis function	

© 2017 HORIBA, Ltd. All rights reserved.

Explore the future

13

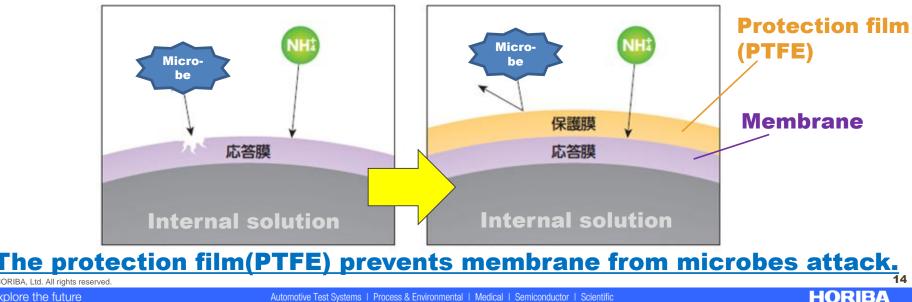
HORIBA


Feature 1

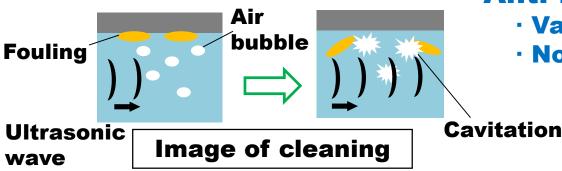
Explore the future

Protection film against microbes

Fouling in aeration tank



Biofilm due to microbes


- Influence on measurement
- Deterioration because microbes decompose membrane components (plasticizer)

Sensor feature

Feature 2 **Anti-fouling by ultrasonic cleaning**

Ultrasonic cleaning

Anti-fouling by cavitation

- Valid to microbial fouling
- No need air nor water supply

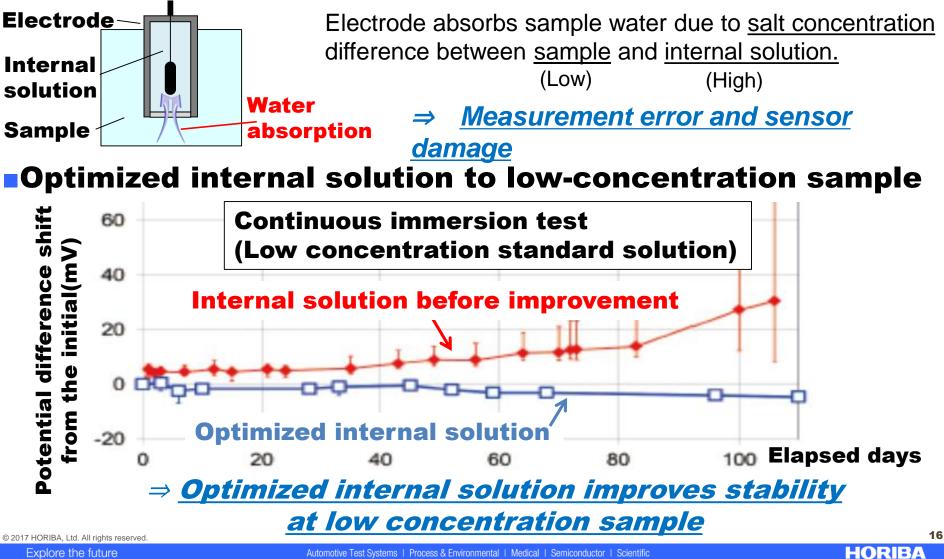
■Application to NH₄-N meter

Optimized oscillation way and positioning enable simultaneous measurement and cleaning. 15

© 2017 HORIBA, Ltd. All rights reserved

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific



Unique Tech.

Feature 3 Stable at low concentration sample

Patent applied

Bad influence by sample water absorption

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

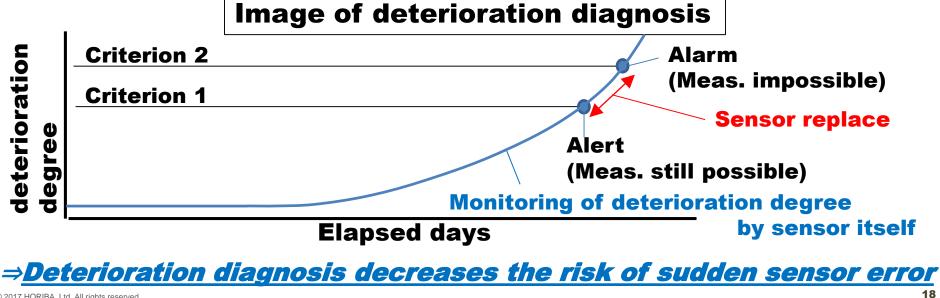
Feature 4 Tool-free sensor chip replacement

Tech. **Potassium** lon(K⁺) chip Ammonium (7692) ion(NH₄⁺)chip (7691) Reference Chip(7211) Sensor cap **Turn the sensor** cap by hand

Each electrode (NH₄⁺, K⁺, Ref) can be replaced without tools. (No need for manufacturer maintenance)

© 2017 HORIBA, Ltd. All rights reserved

Explore the future



Feature 5 Sensor deterioration diagnosis function

Deterioration progress due to fouling

Sensor deterioration diagnosis

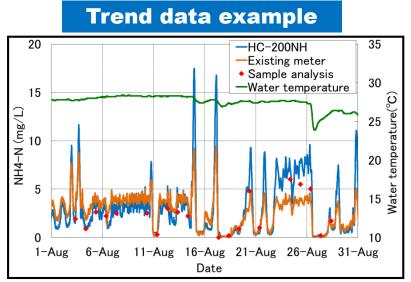
© 2017 HORIBA, Ltd. All rights reserved

Explore the future

Unique

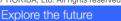
Tech.

applied

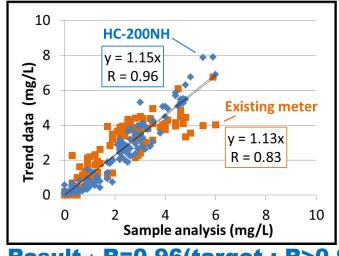

Field test example

Cooperation

Joint research with Bureau of Sewerage, Tokyo Metropolitan Government


Test condition

Place: At an aeration tank in a wastewater treatment plant in Tokyo Period: May to November 2015 (6 months) Sensor life target: More than 6 months Reliability target: Correlation with manual analysis R>0.9 Maintenance period: Once a month (Cleaning, calibration)



Measurement followed sample analysis for 6 month. (Sensor life target is achieved)

© 2017 HORIBA, Ltd. All rights reserved.

Correlation with sample analysis

Result : R=0.96(target : R>0.9) (Reliability target is achieved)

HORIBA

Outline

- Aeration control in Wastewater Treatment Plant
- Ammonia Nitrogen Meter
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - Drinking water treatment

Summary

Wastewater treatment

Sewage and factory waste water

Semi-con fab. (Test installation)

Tokyo Metropolitan Government (Joint research)

Wastewater treatment plant

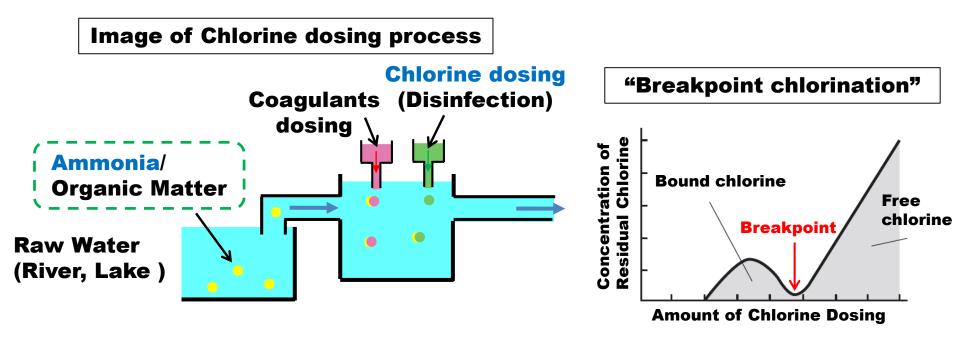
Wastewater treatment R&D

北京排水

center

More and more facilities trying ammonia-based aeration control, especially in big city.

© 2017 HORIBA, Ltd. All rights reserved


Explore the future

Drinking water treatment(Intake Water)

- Control of chlorine dose in drinking water treatment plant

Chlorine needs to be dosed about 10 times of Ammonia ⇒ <u>Ammonia monitoring in raw water helps</u> the control of chlorine dose.

© 2017 HORIBA, Ltd. All rights reserved

Outline

- Aeration control in Wastewater Treatment Plant
- Ammonia Nitrogen Meter
 - Overview
 - Features
 - Filed test (Stability and reliability)
- Applications
 - Waste water treatment
 - Drinking water treatment

Summary

Summary

- Huge electric power consumption for blower in biological aeration tank in WWTP is one of issues to be improved. Municipals and water treatment companies in Japan are working on it.
- In order to save energy for blower, blower control by NH₄-N is effective.
- Long sensor life, stability(in low range), reliability and easy maintenance are required for Ammonia Nitrogen Meter.
 - There are several applications such as waste water treatment process and drinking water treatment process.

HORIBA wishes HC-200NH(Ammonia Nitrogen Meter) helps energy saving and effective treatment

© 2017 HORIBA, Ltd. All rights reserved.

Thank you very much for your attention.

© 2017 HORIBA, Ltd. All rights reserved. Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific

25 HORIBA

26

Explore the future

Automotive Test Systems | Process & Environmental | Medical | Semiconductor | Scientific