Debottlenecking Water-Oil Separation with Increasing Water Flow Rates in Mature Oil Fields

Maher M. Shariff, Ph.D. and Lanre M. Oshinowo, Ph.D.

5th Water Arabia 2017 Conference and Exhibition
October 17 – 19, 2017
Outline

• Background and Motivation
• Numerical Model and Test Matrix
• Results and Discussion
• Conclusions
Background

• Maturing fields with increasing water flow rates
• For certain GOSPs, water-oil separator (WOSEP) is the bottleneck
• WOSEPs are reaching capacity to process oily produced water
• Need solution to debottleneck gas-oil separation plant for forecast rates
 - Quantify separation performance
 - Apply enhanced internal technology to improve separation at higher throughputs
Produced Water Forecast

Produced Water Flow Rate

Today

+10 Years

1X

1.5X

Not to scale
Motivation

• Improving oil separation reduces lost production
• Improved produced water quality prevents formation damage on reinjection to maintain reservoir pressure
• Avoid the need to build additional WOSEPs in the GOSP
Objectives

• Use state-of-the-art multiphase CFD to model the oil-water flow in the WOSEP vessel
• Develop debottlenecking solutions to increase water handling capacity
Typical GOSP

Production Header

HPPT

Water

Water

WOSEP

Produced Water Injection

LP Gas

Dehydrator

Dry Oil

HP Gas

Desalter

Gas

Water

Oil
Water Oil Separation Vessel (WOSEP)

Approximate dimensions: 180 ft Length; 14 ft diameter

160 MBD Throughput
Multiphase Modeling

Separator CFD Modeling

Eulerian-Lagrangian

Eulerian

Homogeneous

VOF

Explicit (Transient)

Implicit (Steady)

Mixture

N-Phase

Population Balance

Inhomogeneous

N-Phase

Population Balance
Numerical Methodology

• N-Phase Eulerian multiphase model
 - Water - primary phase
 - Oil and gas - secondary phases
• Phase interaction
 - Schiller-Naumann drag model
• Turbulence
 - Standard $k - \varepsilon$ turbulence model with scalable wall functions
• Steady and incompressible
• High-resolution Computational mesh
 - 2 million polyhedral cells/elements
Solution Platform

• ANSYS Workbench for Pre-Processing - Geometry and Mesh
• ANSYS Fluent R18.0 for Solution
 - Simulations run in parallel on an HPC cluster with 216 cores
• ANSYS CFD-Post 18.0 for Post-Processing
Numerical Test Matrix

<table>
<thead>
<tr>
<th>Run</th>
<th>Flow (MBD)</th>
<th>Oil Droplet Diameter (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>173</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>173</td>
<td>50</td>
</tr>
<tr>
<td>3</td>
<td>265</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>265</td>
<td>50</td>
</tr>
</tbody>
</table>

Inlet Oil Fraction (OF) 0.01
Geometry

- Oil Bucket
- Gas nozzle
- Inlet Distributor (Water & Oil)
- Water Weir
- Water Baffle
- Water Outlet
Computational Mesh
WOSEP Flow Field

Streamlines (colored by time)

Run 2
WOSEP Flow Field

Streamlines (colored by time)

Run 1
Run 2
Run 3
Run 4

Front view
Residence Time Distribution

<table>
<thead>
<tr>
<th>Water Flow Rate (MBD)</th>
<th>Mean of RTD [s]</th>
<th>Retention Time (Vc/Q) [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>173</td>
<td>1142</td>
<td>1305</td>
</tr>
<tr>
<td>265</td>
<td>784</td>
<td>851</td>
</tr>
</tbody>
</table>
Residence Time Distribution

[Graph showing Residence Time Distribution with two curves labeled 173 MBD and 265 MBD]
Oil Fraction

Run 2
Effectiveness of Oil Separation

<table>
<thead>
<tr>
<th>Run</th>
<th>Flow (MBD)</th>
<th>Oil Droplet Diameter (µm)</th>
<th>Oil Removed (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>173</td>
<td>10</td>
<td><1</td>
</tr>
<tr>
<td>2</td>
<td>173</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>265</td>
<td>10</td>
<td><1</td>
</tr>
<tr>
<td>4</td>
<td>265</td>
<td>50</td>
<td>4</td>
</tr>
</tbody>
</table>

\[
\text{Separation Efficiency} = \frac{\text{Inlet Oil Fraction} - \text{Outlet Oil Fraction}}{\text{Inlet Oil Fraction}} \times 100\%
\]
Conclusions

- Successful CFD simulations of WOSEP under different conditions
- Flow patterns show adverse vortices induced by the inlet distributor that reduce ability to separate oil from water
- Very low oil separation obtained from separator design for base flow rate
- Increased water throughput further reduces separation performance
- Potential to increase primary stage produced water oil removal through improvements in WOSEP design:
 - Inlet distributor
 - Additional internals (perforated plate baffles or derivatives, coalescing plate packing)
 - Vessel configuration
Acknowledgments

Dr. Regis D. Vilagines,
Dr. Ehab Elsaadawy, Dr. Fahad S. Al-Rashed
Oil and Gas Treatment Division, Saudi Aramco