Solutions for Water Scarcity

SAWEA Workshop June, 2006

Daoud Sliat, Business/ Projects Development GE Infrastructure/ Water & Process Technology

Water Scarcity

Definition

The Demand for Freshwater

that Exceeds

The Sustainable Supply of Freshwater

Implications

Left unresolved Water Scarcity will:

- Slow/Stop economic expansion
- Reduce agricultural output and food independence
- Degrade public health and quality of life

Mandate – Sufficient, safe, reliable freshwater delivered at the lowest total cost

Regions of Water Scarcity

In 2001 the UN identified 18 countries that have a critical water shortage:

- Mainly in the Middle East and North Africa
- And a few countries in Europe, Asia and the Caribbean

In the year 2025 it is projected the number of water stressed countries will increase to 29:

- Population in current water scarce regions is expected to almost double
- Increasing demands of industry for high quality process water to sustain the region's economy

Global Water Stress is Spreading

Impact on Infrastructure of Industrial Growth is happening at a faster rate as Municipalities curtail scarce water for consumer use

Components of an Integrated Strategy For Water scarcity

Desal Driving Forces as a supply solution

- Scarcity of water in both the developing and the developed world.
- Demographics stressing existing water sources.
- Industry follows population growth and creates additional demand
- Technology is reducing treatment costs.
- Risk re-allocation via BOO/DBO models

Desalination

Brackish Water – EDR

Industrial Reuse - Thermal, RO, UF

Technology Driving Attractive Economics

Lifecycle costs for alternative water sources

Cost of the Desalinated water is gone down by 80% in last 20 years

Sulaibiya Wastewater Treatment And Reclamation Plant BOT Project - Kuwait

Sulaibiya Water Reclamation Drivers

Water Scarcity Challenges:

- Fresh water supplies limited and declining in Kuwait.
- A need to build a new wastewater treatment facility that would comply with the highest criteria for effluent discharge to the Gulf and away from residential Area
- To include an advanced Technology to meet the increasing demands of agriculture and other non-potable applications with a high quality reusable effluent
- Reduce the increasing demand on the existing and planned desalination plants in Kuwait for potable water
- Use Privatization "Public-Private-Partnership (PPP)" as a financial enabler and risk transfer vehicle to insure a predictable water tariff and project schedule
- It is reported that the above Water Management strategy will save the State of Kuwait some \$11 billion over the project concession period

UF Skids

RO Skids

Development Steps

Initial Data:

- Product requirements (m3/day)
- Customer business structure preference, if known
- Term of contract (BOO, DBO, O&M)
- Guarantor
- Project Status

Structured Financed Projects Considerations

- Project Definition Has the project been clearly defined with a bankable Water Sales Agreement?
- Revenue Security Is the client providing a bankable "take-or-pay" feature in the contract with suitable sovereign guarantees?
- **Asset Security** Is the credit rating of the client strong enough to assume the purchase of the project assets if required?
- Tariff Adjustment Does the contract allow for fluctuations in economic indices?
- Economic How strong is the economy of the host country, and what incentives (tax) exist between the
 host country and the country of the foreign investor.
- **Institutional** How strong and proven are the relevant institutions (political, judicial, financial, etc.) in the host country.
- **Political** How stable is the local politics and how strong is the government relationship between the host country and the foreign investor's country.
- Power guarantee
- **Banking** Is there sufficient demand in the payment currency of the contract to attract adequate competition for the debt financing.
- **Currency** Ease of converting and transferring currency, hard currency on-shore bank accounts
- Local Participation Consideration given to the need of local partner to participate in the equity and/or EPC construction.
- Change in Law Allows tariff adjustment
- Acceptable Site Lease

Dedication Ceremony – March 8, 2005

Sulybiah Loop –BOT Project

Contract Timeline

- 1. Pre-qualification Phase
- 2. Tendering Phase Until Contract Signing
- 3. Development Period
- 4. Engineering, Procurement & Construction (EPC) Period
- 5. Operation & Maintenance Period

A global team for engineering, manufacturing and finance

The Concession Contract

Treat Raw Municipal Wastewater to Reclaimed Water

Conforming to Quality Parameters

- > 30 Year Concession
- > Plant Capacity:
 - Initially: 375,000 M³/D
 - Expansion Capability: 600,000 M³/D
- Payment for Produced Effluent

Rate Per M³

- Guaranteed Minimum Inflow
- Guaranteed Off-taking of all Effluent.

Major Features

➤ Strategic Asset:

Handling 60% of Kuwait Domestic WW.>375,00 M3/DAY

- Government Guarantees Power Supply at Agreed Upon Rates.
- Protection of Concessionaire from Negative Effect of a New Law.
- Concessionaire Entitled to Claim Benefit from Any More Favorable New Law.
- ➤ Local Financing in KD

Sulaibiya Project Structure - Kuwait

PROJECT GENERAL DESCRIPTION

Ardiya Operations

Ardiya Preliminary Treatment and Pumping Station

Sulaibiya Operations

Sulaibiya Wastewater Treatment and Reclamation

Ardiya Preliminary Treatment and Pumping Station

Pump House

SCADA System at Ardiya

Transfer Pipelines Between Ardiya and Sulaibiya

Transfer Pipelines

Aeration Tanks

Secondary Clarifiers

Aerobic Digesters

Gravity Belt Thickeners

UF Skids and Piping

Pumps at UF Building

RO Skids and Piping

RO Pump Room and Piping

RO Building

RO Building Control Room

Why is Sulaibiya A Ground Breaking Project?

> WORLDWIDE:

- Largest Wastewater Treatment and Reclamation.
- Largest RO Plant.

> IN THE ME:

First Major WWT BOT in the ME

> IN THE GULF:

- First Major Infrastructure BOT
- Fully Financed by Local National Banks.

THANK YOU

Daoud.sliat@ge.com